Figure 2. Work rate (Watts) V_{O_2} relationship in normal subjects and patients with heart failure. A: Normal slope is $\sim 10 \text{ ml } V_{O_2}$ per Watt. B: At high work rates, the V_{O_2}/Watts slope may plateau in HF patients. C: In severe LV dysfunction, V_{O_2} may decline as blood pressure and cardiac output are reduced.

Jeffrey Dwyer, PhD, Clinical Specialist in Cardiology at Kaiser Permanente.
Figure 3. Identification of the ventilatory threshold (VT) by the V-Slope method. Patients with heart failure demonstrate a change in the V-Slope at a lower V_O_2.

Below VT: CO_2 from Kreb’s cycle stimulates ventilation

Above VT: CO_2 from Kreb’s and lactate buffering further stimulates ventilation, increasing CO_2 output

Jeffrey Dwyer, PhD, Clinical Specialist in Cardiology at Kaiser Permanente.
Figure 4. Ventilatory response (V_E) as a function of $V\text{CO}_2$ ($V_\text{E}/V\text{CO}_2$ slope) during incremental exercise in normal and patients with mild or moderate heart failure.