Introduction

New California Chapter Exercise Health And Sports Cardiology Committee
The American College of Cardiology’s California Chapter has established an Exercise Health and Sports Cardiology Committee in response to the growing need for evidence-based, standardized, comprehensive care for athletes. The committee aims to serve as a resource for consultative cardiovascular assessment of highly active individuals as well as a home for educational tools to aid in their assessment and management. This is our first educational endeavor which includes the following five sections listed in the menu with links to key subjects.

Preparticipation Evaluation of the Athlete’s Heart: Questionnaire with Videos and Resources

Why should you be concerned with answering these scary questions? Sure, heart problems and their complications including death are rare in young athletes. But what if the causes of these conditions and their complications were known and we knew their warning signs? Your parents, relatives and coaches would like you to be able to play sports safely. Modern medicine has made tools available for screening and treating heart conditions so why not take advantage of them? The first step in doing so is to watch these videos and answer these questions as best you can. Studies have shown us that they can be clues for recognizing the first signs of heart conditions. Your answers to these questions will be summarized for you to take to your annual screening for participation in organized sports with some suggestions for your doctor or organization to consider prior to sports participation. Even if you don’t have any of these symptoms now, you now know that if they ever occur they should be reported. Please share this resource with your teammates.

Athlete Cardiovascular Risk Video Questionnaire

Print out this form and watch the videos before entering your answer
Videos are courtesy of the University of Texas Southwestern Medical Center (Dr. Benjamin Levine).

1. Have you ever had discomfort, pain, tightness, or pressure in your chest during exercise?

Watch the video below and then check appropriate response on printed questionnaire.

 

 Video 1  Chest Pain: Assessing Young Athlete Health Risks (English)

 

Video 1 Chest Pain: Assessing Young Athlete Health Risks (Spanish)

2. Have you ever passed out or nearly passed out DURING exercise?

Watch the video below and then check appropriate response on printed questionnaire.

 Video 2  Syncope: Assessing Young Athlete Health Risks (English)

 

Video 2 Syncope: Assessing Young Athlete Health Risks (Spanish)

3. Do you ever get so out of breath that you can’t continue to exercise even though your peers aren’t tired yet?

Watch the Video and then check appropriate response on printed questionnaire.

 Video 3  Shortness of Breath: Assessing Young Athlete Health Risks (English)

Video 3 Shortness of Breath: Assessing Young Athlete Health Risks (Spanish)

4. Have you ever felt like your heart was racing, fluttering, or beating abnormally?

Watch video below and then check appropriate response on printed questionnaire.

 Video 4  Palpitations: Assessing Young Athlete Health Risks (English)

Video 4 Palpitations: Assessing Young Athlete Health Risks (Spanish)

5. Have you ever seen a doctor for a heart problem before?

Check appropriate response on printed questionnaire.

6. Has a doctor ever ordered testing for your heart, such as an EKG/ECG, x-ray, Echocardiogram, MRI or an exercise stress test?

Check appropriate response on printed questionnaire.

7. Has a doctor ever told you not to play sports before?

Check appropriate response on printed questionnaire.

8. Have you ever had an unexplained seizure?

Check appropriate response on printed questionnaire.

9. Do you take any performance supplements or energy drinks?

Check appropriate response on printed questionnaire.

Suggestions for the Physician Performing the PPE

Pre Participation Exam (PPE) Screening

The PPE is widely advocated for all youth athletes engaged in competitive sports. This year, in order to screen for the possible consequences of COVID-19, all athletes should undergo a PPE that assesses current or past symptoms of the SARS-Coronavirus-2. Testing to exclude significant cardiopulmonary disease should be based on the algorithms provided below. Most organizations suggest individual screening by a qualified clinician ( or trainer ) who has an available cardiology ( or sports medicine ) consultant. Mass screenings would require precautionary measures in order to maintain physical distancing. All screening should follow guidelines outlined by the California Department of Public Health, including cleaning of equipment (eg., ECG machines and wires to electrodes). Among athletes with  definite or possible prior infection , the use of adjunctive testing including electrocardiography, cardiac biomarkers, non-invasive imaging, and exercise testing represent potential appropriate options, depending on clinical context such as concerning symptoms.

History of new cardiac symptoms is extremely concerning and may be difficult to distinguish from deconditioning which can be due to sheltering in place. Importantly, myopericarditis related to COVID-19 should be considered in athletes with a history of new onset chest pain/pressure (even in the absence of fever and respiratory symptoms), palpitations, exercise intolerance, and/or resting or exercise related excessive tachycardia. Comprehensive clinical evaluation, regardless of ECG findings, is indicated in athletes with new onset cardiovascular symptoms or exercise intolerance. COVID-19 affected myocardial tissue can promote cardiac arrhythmias, and a major aim of the PPE is to identify those at risk for cardiac arrhythmias. At Stanford, an inexpensive ECG patch that can be automatically interpreted for PVC burden in clinic is being evaluated for this purpose in athletes recuperating from COVID-19.

Athlete COVID-19 Risk Questionnaire

Though we appear to be on the downsloping curve of the Pandemic, there may be natural seasonal surges or possibly exacerbations due to new genetic strains of SARS-Coronavirus-2  or other viruses.  Therefore, your Pre Participation exam ( PPE) must include questions regarding whether you have had COVID-19 or been exposed to it or other viral infections. The SARS-Coronavirus-2 (COVID-19) infection (as well as other viral agents) can cause damage to your heart (myopericarditis) even if you’ve only had minor exposure and not had any complaints or any symptoms. Screening for active or prior infection, with appropriate work up could prevent life threatening consequences during or after physical activity. Please complete this questionnaire, generate a pdf/copy of your responses and give it to your Doctor, coach or trainer.

Current Recommendations for Cardiac Evaluation during the Covid-19 Pandemic

Cardiac evaluation has been intensified and exercise recommendations revised during this pandemic due to concerns raised by the cardiac complications noted in severe cases of Covid-19. Even though severe cases of Covid-19 are rarely seen in younger individuals, the potential for cardiac complications remains a concern and can sometimes occur months after even mild or asymptomatic infections. As a medical community, our recommendations are empirical and must be adjusted as knowledge grows and testing techniques improve. The latest recommendation (October 2020) was commissioned by the ACC Council on Sports Cardiology who chose America’s most active and experienced Sports Cardiologists and Sports Medicine specialists with cardiology knowledge to develop the document.

The recommendation has been published in a peer reviewed journal and is available as a ACC webex video. The recommendations are specific for High School athletes (Figure 1), College and Professional athletes (Adults, Figure 2) and Master athletes (Figure 3). The experts also recommended adapted criteria for Myocarditis (Table 1). They presented specific cautions regarding the routine use of Computer Magnetic Resonance Imaging (MRI or CMR) as part of post-COVID PPE algorithm until there is a better understanding of how to differentiate pathological changes from those due to exercise training. The risk level of symptoms is provided in Table 2.

These experts have observed that cardiovascular consequences of Covid-19 are relatively mild and so when compared to initial recommendations at the beginning of the pandemic, they have lessened indications for cardiac testing prior to return to play.

It is assumed that the sport and exercise are performed consistent with the current level of physical distancing, appropriate hygienic measures and face mask guidelines. Age and severity of illness have been emphasized and should be taken into account when considering cardiovascular diagnostics. Note also that at this time the benefits of exercise far outweigh the risk of exercise-induced cardio-pulmonary damage in the young. Our committee promulgates these recommendations with the caveat that they may be superseded by other guidelines as new knowledge becomes available.

 

The pathology (fibrosis, inflammation and thrombosis) of damage to the heart and lungs has been demonstrated but the time course and severity is uncertain and appears to be mild in athletes. Also it is not certain to what degree exercise training can exacerbate the damage caused by the pathogen but the experience so far is that this appears to be minor.

Figure 1. Coronavirus Disease 2019 (COVID-19) Return-to-Play Algorithm for Athletes in Competitive High School Sports

This is the currently recommended algorithm (Oct 2020) for high school athletes with confirmed COVID-19. Note that among the cardiovascular (CV) symptoms, syncope of unclear cause identifies individuals who definitely require advanced CV testing, including cardiac magnetic resonance (CMR) imaging, exercise testing, and ambulatory ECG monitoring. Typical initial testing is obtained via a nasopharyngeal swab and polymerase chain assay for conserved regions of severe acute respiratory syndrome coronavirus–2 RNA. Multisystem inflammatory syndrome in children (MIS-C) involves fever, rash, abdominal pain, vomiting, diarrhea, lethargy, and conjunctivitis, possibly developing weeks after infection. The guidelines for RTP after myocarditis is indicated in Table 1.
 

Legend:

CDC – US Centers for Disease Control and Prevention; ECG, 12-lead ECG/EKG; echo, echocardiogram; hs-cTn, high-sensitivity cardiac troponin-I; RTP, return to play.

Figure 2. Coronavirus Disease 2019 (COVID-19) Return-to-Play Algorithm for Collegiate and Professional Athletes in Competitive Sports

This is the currently recommended algorithm (Oct 2020) for all college and professional athletes with confirmed COVID-19. Note that among the cardiovascular (CV) symptoms, syncope of unclear cause identifies individuals who definitely require advanced CV testing, including CMR imaging, exercise testing, and extended rhythm monitoring. (see comments and legend for Table 1).

Figure 3. Coronavirus Disease 2019 (COVID-19) Return-to-Play Algorithm for Recreational Masters Athletes

This is the currently recommended algorithm (Oct 2020) for all athletes at the masters level with confirmed COVID-19. Cardiovascular disease (CVD) risk factors include hypertension, coronary artery disease, atrial fibrillation, and diabetes. (see comments and legend for Table 1).

Table 1. Adapted Criteria for Myocarditis

Myocarditis (Probable Acute Myocarditis With Both of the Following Criteria)

1. Clinical syndrome, including acute heart failure, angina-type chest pain, or known myopericarditis of less than 3 months’ duration.

2. Otherwise unexplained increase in serum troponin levels, ECG repolarization abnormalities, arrhythmias or high-grade atrioventricular block, abnormal ventricular wall motion, or pericardial effusion. Additional cardiac MRI findings that suggest myocarditis.

Sports Eligibility Myocarditis Recommendations

1. Before returning to sports, athletes diagnosed with a clinical syndrome consistent with myocarditis should undergo a resting echocardiogram, ambulatory ECG monitoring, and an exercise test no less than 3 to 6 mo after the illness.

2. It is reasonable that athletes can resume training and/or competition if all of the following criteria are met:

    A. Ventricular systolic function has normalized.
    B. Serum markers of myocardial injury, heart failure, and inflammation have returned to normal levels.
    C. Clinically relevant arrhythmias are absent.

Table 2. Risk levels of Symptoms

1. Mild Symptoms

include anosmia, ageusia, headache, mild fatigue, mild upper respiratory tract illness, and mild gastrointestinal illness;

2. Moderate Symptoms

include persistent fever, chills, myalgias, lethargy, dyspnea, and chest tightness;

3. Severe Symptoms

include dyspnea, exercise intolerance, chest tightness, dizziness, syncope, and palpitations which often require hospitalization.

Myocarditis and COVID-19

It is assumed that the sport and exercise are performed consistent with the current level of physical distancing, appropriate hygienic measures and face mask guidelines. Age and severity of illness have been emphasized and should be taken into account when considering cardiovascular diagnostics. Note also that at this time the benefits of exercise far outweigh the risk of exercise-induced cardio-pulmonary damage in the young. Our committee promulgates these recommendations with the caveat that they may be superseded by other guidelines as new knowledge becomes available.

The pathology (fibrosis, inflammation and thrombosis) of damage to the heart and lungs has been demonstrated but the time course and severity is uncertain and appears to be mild in athletes. Also it is not certain to what degree exercise training can exacerbate the damage caused by the pathogen but the experience so far is that this appears to be minor.

Myocarditis and COVID-19 in Professional Athletes

The major North American professional sports leagues were among the first to return to full-scale sport activity during the coronavirus disease COVID-19 pandemic. Martinez et al reported a retrospective analysis of return to play cardiac testing performed between May and October 2020 on professional athletes who had tested positive for COVID-19. The professional sports leagues (Major League Soccer, Major League Baseball, National Hockey League, National Football League, and the men’s and women’s National Basketball Association) implemented mandatory cardiac screening requirements for all players who had tested positive for COVID-19 prior to resumption of team-organized sports activities. The study included 789 professional athletes (98.5% males) and the majority had prior symptomatic COVID-19. Abnormal screening results were identified in 30 athletes (3.8%; troponin, 6 athletes [0.8%]; ECG, 10 athletes [1.3%]; echocardiography, 20 athletes [2.5%]), necessitating additional testing; Five athletes (0.6%) had CMR imaging findings suggesting inflammatory heart disease (3 myocarditis; 2 pericarditis, that resulted in restriction from play. No adverse cardiac events occurred in athletes who underwent cardiac screening and resumed professional sport participation.

 

Myocarditis and COVID-19 in Young Athletes

As of June, 2021 we have a better understanding of the prevalence of myocarditis in competitive athletes diagnosed with Covid-19 thanks to two large prospective multicenter studies of collegiate athletes.
ORCCA, the first large study of young athletes positive for Covid-19, included 3,018 college athletes from 42 universities. Serum troponin tests, ECG, and echocardiography identified 15 athletes (15/3,018=0.5%) with possible cardiac involvement. In a subgroup of 198 athletes who underwent a primary CMR imaging screening strategy (unselected by the other tests), a higher proportion of athletes demonstrated definite, probable, or possible cardiac involvement (n = 6 [3.0% for primary CMR strategy vs 0.5% for primary conservative strategy]).

The Big Ten registry was the second study and included 13 major universities from the Big Ten athletic conference. The strategy mandated ECG, troponin testing, echocardiography, and CMR imaging for athletes with positive COVID-19 test results, regardless of prior symptomatic status. Of 2,461 athletes,1597 (64.9%) had the complete comprehensive screening testing, including CMR imaging without prior selection. They found that 37 (2.3%) of these athletes demonstrated diagnostic criteria for myocarditis by CMR imaging, including 20 (1.2%) with normal ECG, echocardiography, and troponin test results. This leaves 17 or 1% with these positive conservative test results who would not have been identified without CMR imaging (2.3% for primary CMR strategy vs 1% for primary conservative strategy). Variability was observed in prevalence across universities, and testing protocols were closely tied to the detection of myocarditis. Variable ascertainment and unknown implications of CMR findings underscored the need for standardized timing and interpretation of cardiac testing. They propose that their CMR imaging data provide a complete prevalence of clinical and subclinical myocarditis in college athletes after COVID-19 infection. 

Comparison of the results of a conservative testing approach (symptoms, troponin, ECG and echocardiogram) vs a CMR for all athletes with COVID-19 for detecting myocarditis is best estimated using data from the 2 largest studies summarized above.  The results are 3.0-2.3% for primary CMR vs 0.5-1% for primary conservative strategy.  A “CMR for all strategy” more than doubles sensitivity but it is not clear if this added yield from a very expensive test saves lives or lessens myocardial damage.  Any comparison of a CMR strategy to another approach will favor CMR if the images are both the test result and the gold standard. The more appropriate gold standard would be the clinical outcome of the athletes; ie, do they really develop myocardial damage and/or a bad clinical outcome such as death or heart failure?

 It is revealing to consider some of the factors/variables not incorporated in these 2 studies that could affect the conclusions:  

  1. The test characteristics of the diagnostic elements to identify COVID-19 myocarditis symptoms, troponin, ECG and echocardiogram).
  2. The relative importance and characterization of the symptoms of myocarditis (including chest pain, breathing abnormalities, palpitations and fatigue)
  3. The test characteristics of the tests identifying the presence of the Sars-CoV-2 virus and how applied (nucleic acid amplification tests (NAATs) and antigen tests, nasal swab vs saliva, lab-based vs point of contact)
  4. The timing of assessment relative to the diagnosis of COVID-19 (particularly lacking is data regarding the “long-hauler” phenomena)
  5. The exact significance of the CMR findings reported in athletes (what is pathological, associated with long term damage and what is the result of exercise training?)
  6. The virulence of the causative genomic variant of Sars-CoV-2 virus 

These considerations do not detract from the available data since they could not be controlled or assessed in these studies.  However, they emphasize the need for humility and an athlete-centered, shared decision-making approach to athletes.  Furthermore, these studies require longer follow up to determine the risk of death due to the markers of myocarditis.

In an excellent Editorial responding to the Big Ten study, Udelson et al summarized the available data on return to play after COVID-19 Infection. We agree with them that the current data support a conservative approach to cardiac testing as in the guidelines and that clinical judgement be applied to individual cases. We also emphasize the need for an athlete-centered, shared decision-making approach in the management of young athletes with myocarditis post COVID-19.  These findings are consistent with our COVID-19 experience at Stanford Sports Medicine.

COVID-19 Vaccines and Myocarditis

Since April 2021, there have been increased reports to the Vaccine Adverse Event Reporting System (VAERS) of cases of called myocarditis and pericarditis happening after mRNA COVID-19 vaccination (Pfizer-BioNTech and Moderna) in the United States. These reports are rare, given the number of vaccine doses administered, and have been reported after mRNA COVID-19 vaccination, particularly in adolescents and young adults. Most patients who received care responded well to medicine and rest and quickly improved.

The cases reported are mostly in male adolescents and young adults age 16 years or older, more often after getting the second dose of one of these two COVID-19 vaccines than after the first dose, typically within several days after COVID-19 vaccination. They can usually return to their normal daily activities after their symptoms improve, and the above guidelines for management of myocarditis should be followed.Overall crude reporting for myo/pericarditis ages 12-17 is 9.1 cases per million in females and 66 per million in males. Overall reporting for ages 18-24 is 5 per million in females and 56 per million in males.  The available outcome data indicate that patients generally recover from symptoms and do well.  The CDC continues to recommend COVID-19 vaccination for everyone 12 years of age and older, given the greater risk of COVID-19 illness and related, possibly severe complications than the cases associated with vaccines.

 Click Here For Additional Resources and references(PDF)